Using the inertia of spacecraft during landing to penetrate regoliths of the Solar System

نویسندگان

  • M. D. Paton
  • S. F. Green
  • A. J. Ball
  • J. C. Zarnecki
چکیده

The high inertia, i.e. high mass and low speed, of a landing spacecraft has the potential to drive a penetrometer into the subsurface without the need for a dedicated deployment mechanism, e.g., during Huygens landing on Titan. Such a method could complement focused subsurface exploration missions, particularly in the low gravity environments of comets and asteroids, as it is conducive to conducting surveys and to the deployment of sensor networks. We make full-scale laboratory simulations of a landing spacecraft with a penetrometer attached to its base plate. The tip design is based on that used in terrestrial Cone Penetration Testing (CPT) with a large enough shaft diameter to house instruments for analysing pristine subsurface material. Penetrometer measurements are made in a variety of regolith analogue materials and target compaction states. For comparison a copy of the ACCE penetrometer used on the Huygens mission is used. A test rig at the Open ∗Corresponding author ∗∗Phone: +358 50 4302984 Email address: [email protected] (M. D. Paton ) Preprint submitted to Advances in Space Research June 16, 2015 University is used and is operated over a range of speeds from 0.9 to 3 m s−1 and under two gravitational accelerations. The penetrometer was found to be sensitive to the target’s compaction state with a high degree of repeatability. The penetrometer measurements also produced unique pressure profile shapes for each material. Measurements in limestone powder produced an exponential increase in pressure with depth possibly due to increasing compaction with depth. Measurements in sand produced an almost linear increase in pressure with depth. Iron powder produced significantly higher pressures than sand presumably due to the rough surface of the grains increasing the grain-grain friction. Impacts into foamglas produced with both ACC-E and the large penetrometer produced an initial increase in pressure followed by a leveling off as expected in a consolidated material. Measurements in sand suggest that the pressure on the tip is not significantly dependent on speed over the range tested, which suggests bearing strength equations could be applied to impact penetrometry in sand-like regoliths. In terms of performance we find the inertia of a landing spacecraft, with a mass of 100 kg, is adequate to penetrate regoliths expected on the surface of Solar System bodies. Limestone powder, an analogue for a dusty surface, offered very little resistance allowing full penetration of the target container. Both iron powder, representing a stronger coarse grained regolith, and foamglas, representing a consolidated comet crust, could be penetrated to similar depths of around two to three tip diameters, probably more if impacting with a slightly higher speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary Design of Spacecraft Attitude Control with Pulse-Width Pulse-Frequency Modulator for Rest-to-Rest Maneuvers

In this paper, the preferred region of design parameters for quasi-normalized equations of single-axis attitude control of rigid spacecraft using pulse-width pulse-frequency modulator (PWPFM) is presented for rest-to-rest maneuvers. Using the quasi-normalized equations for attitude control reduces the system parameters, that is, the moment of inertia, the filter gain, and the maximum torque of ...

متن کامل

Mechanical Properties of Asteroid Materials: Clues from Analysis of Spacecraft Images and Results from Laboratory Experiments

Introduction: To the extent that the morphology and bulk mechanical behavior of surface rocks and regoliths of small asteroids might be representative of the materials and mechanical properties of the interiors of these small objects, study of regoliths and regolith analogs can provide important information relevant to planning for future spacecraft operations there. Coefficient of Restitution ...

متن کامل

Fuzzy-Logic Based Frequency Controller for Wind Farms Augmented With Energy Storage and PV Systems

To improve the primary frequency response in future low-inertia hybrid power system a fuzzylogic based frequency controller (FFC) for wind farms augmented with energy storage systems(wind-storage system) and intelligent PV farms for the frequency stabilization is proposed inthis paper. Using system frequency deviations the proposed controller provides bidirectionalreal p...

متن کامل

Autonomous Real-Time Site Selection for Venus and Titan Landing using Evolutionary Fuzzy Cognitive Maps

Future science-driven landing missions, conceived to collect in-situ data on regions of planetary bodies that have the highest potential to yield important scientific discoveries, will require a higher degree of autonomy. The latter includes the ability of the spacecraft to autonomously select the landing site using real-time data acquired during the descent phase. This paper presents the devel...

متن کامل

Designing a new robust control for virtual inertia control in the microgrid with regard to virtual damping

Background and Objectives: Virtual inertia control, as a component of a virtual synchronous generator, is used for the implementation of synchronous generator behaviour in microgrids. In microgrids that include high-capacity distributed generation resources, in addition to virtual inertia, virtual damping can also lead to improvement of frequency stability of the microgrid. The purpose of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015